
UW MLEARN 410:
Applied Machine Learning

Advanced Topics: Big Data

Requirements

● Unix command line (sorry Windows folks)
● jq

https://stedolan.github.io/jq/download/
● Vagrant, VirtualBox, Spark cluster from

https://github.com/alexholmes/vagrant-hadoop-s
park-hive

● Vowpal Wabbit
https://github.com/JohnLangford/vowpal_wabbit
/wiki/Download

● RCV1-V2 dataset
http://hunch.net/~vw/rcv1.tar.gz

https://stedolan.github.io/jq/download/
https://stedolan.github.io/jq/download/
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
http://hunch.net/~vw/rcv1.tar.gz
http://hunch.net/~vw/rcv1.tar.gz

BIG DATA

● Our approach so far: loading processed datasets
into memory

● Problems:

○ Useful data may be mixed in with other data
○ Data may need to be cleaned/formatted before using
○ Data may be too large to hold in memory

■ What does that mean? too many columns? too many rows?
■ Do we even need to use all the data?

Website http logs

Site Logs Example

● 6400 requests made by one client over the course
of ~5 minutes!

● Not all of these go to the CNN servers
○ Fun experiment - turn on an ad-blocker and visit the

same sites

● Now think about how many requests the servers
are receiving

Site Logs Example

● Servers just dump all requests into log files and
carry about their jobs

● Let’s say we want to do some kind of ML with all
the GET requests we sent out

○ An http GET request is basically asking a server to send
some kind of information back to the client

Site Logs Example

cat cnn.har | jq '.log.entries[] | .request.method,
.serverIPAddress' | paste -d" " - - | grep GET | grep -v
'\"\"' | cut -f2 -d' ' | sed 's/"//g' | sort | uniq -c | sort
-k1,1nr

● This processes the data line-by-line*
○ * jq processes it chunk-by-chunk, but each chunk is not

that huge
○ * The sorts are the only part that need the entire data

Bigger data? Fancier pre-processing?

● Even this data was relatively well structured (json
with a schema)

● What if you have data scraped from the web?
○ Can be MASSIVE

● Need to parse the HTML/CSS/XML to get text
(images/other media?) and then do NLP.
○ Way slower
○ Can’t do on the command line

Cluster layout

Clusters!!!

● Parsing one page is totally independent of the
parsing every other page.

● In the previous example, we would not need to
combine the data until the first sort step.

● If we had k computers, we could go k times faster!

○ modulo overhead in coordination

Word counting - First attempt

dog 10

cat 5

... ...
dog 3

cat 12

... ...

dog 17

cat 8

... ...

dog 10+17+3=30

cat 5+8+12=25

... ...
Worker 1

Worker 2

Worker 3

Master

Problems with the first approach

● All computers are transferring data to the master
at the same time

➢ Bottleneck in data transfer

● Second step - only one computer is doing all the
work

Word counting - Step 1

dog 10

cat 5

fish 12

... ...

dog 3

cat 12

fish 6

... ...

dog 17

cat 8

fish 20

... ...
Mapper 1

Mapper 2

Mapper 3

Word counting - Transfer

dog 10

cat 5

fish 12

... ...

dog 3

cat 12

fish 6

... ...

dog 17

cat 8

fish 20

... ...
Worker 1

Worker 2

Worker 3

(dog, 10)
(cat, 8)

(dog, 3)
(fish, 20)(cat, 12)

(fish, 12)

Word counting - Step 2

cat 5+8+ 12

... ...
fish 6+12+20

... ...

dog 17+10+3

... ...
Reducer 1

Reducer 2

Reducer 3

MapReduce

● Step 1: Map Step 2: Reduce

● Balanced transfer of data and computation load
in the Reduce step

● Important to ensure each word gets mapped to
the same reducer node

○ Hash function f: <word> → {1,2, …, #reducer nodes}
○ random assignment for load balancing

MapReduce, formally

Map Step

● Each map step iterates through each word and
spits out the key, value pair: (<word>, 1)
○ The value is the constant 1 for each word

● E.g. Mapper 1 input: “The quick brown dog jumps
over the lazy dog”

● Mapper 1 output: (the, 1), (quick, 1), (brown, 1),
(dog, 1), (jumps, 1), (over, 1), (the, 1), (lazy, 1),
(dog, 1)

GroupBy Step

● Each mapper sorts the pairs by the keys:

(brown, 1), (dog, 1), (dog, 1), (jumps, 1), …

● Optional step (combiner): Combine pairs with the
same keys at the mapper (usually using the same
logic as the reducer)

(brown, 1), (dog, 2), (jumps, 1)

Distribute to Reducers

● Words are pseudo-randomly assigned to reducers
using a hash function:
○ Important that all mappers use the same pseudo

random hash function.

● Reducer 1 will see:

(dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

from mapper 1, mapper 2, and so on...

Reducers

● Reducer 1 input:
(dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

● Sort again, combine values with the same key:
(dog, [2, 4]), (fish, [3]), (jumps, [1]), (lazy, [1, 2])

● Sum values in list of each value

Distributed File Systems

● The input and output data were distributed
across workers

● This is actually a feature of the file system
○ Based on Google File System (GFS)
○ Open source - Hadoop Distributed File System (HDFS)

● Files are split into chunks, replicated and stored
on random nodes

Distributed File Systems

● When a map task comes in, each mapper takes
the chunks on its local disk and works on those

● Also provides redundancy against failures
○
○ If a machine goes down, all the data on it is stored on

other nodes and can be re-processed as needed

Hadoop versus Spark

● Hadoop needs to do
Map→Reduce→Map→Reduce

● Hadoop writes the output out to disk after every
map and reduce step

● Spark can do Map→Reduce→Reduce→Reduce

● Spark holds everything in memory
○ Less File I/O speeds things up a lot

Hadoop and Spark

● Can use these paradigms to implement many
kinds of algorithms on massive datasets

○ Numerical matrix algebra
○ Relational algebra type (SQL) operations - Joins,

GroupBys, etc…
○ Machine Learning

■ PageRank
■ Random Forests

● Typically not great for algorithms that iteratively
update parameters/state

How to learn with big data

● Large dataset processed - how to do ML?

○ possibly stored on a distributed file system

● Do you really need to use all the data to train?

○ Signal-to-noise level
○ Number of features
○ Complexity (#free parameters) of the model

No? Sample!

● Think before sampling:

○ Leakage of information between train and test splits?
○ Random sampling on <index> and selecting all rows for

given values of <index>

● shuf -n N inputfile > outputfile

Reservoir Sampling

● Ongoing stream of data:
○ n points have passed by
○ want a uniform sample of k points such that
○ every point has probability of k/n

Reservoir Sampling Algorithm

● Let the sample be S[1], …, S[k]

● Store first k points in S[1], …, S[k], then

● Let i be the count of the current item

● Randomly draw an integer j from [1, i]

● If j < k, then overwrite S[j] ← S[i]

Yes? Online learning!

● Data too big to fit in memory - need to process in
chunks

○ similar to pre-processing

● Added benefit → model parameters are
continuously fit to newer data

○ If the underlying data distribution changes, the model
will catch on automatically (eventually)

Gradient descent

● Example: Logistic regression

● Minimize some loss function

○ Recall Lecture 1

Gradient descent

● Intuition: “go downhill taking steps in the
steepest direction”

Gradient descent

● The direction is given by the negative of the
derivative (gradient in multiple dimensions)

● Issues
○ Local minima / Non-unique solutions

Gradient descent

● Issues
○ Saddle points

(http://sebastianruder.com/optimizing-gradient-descent/)

http://sebastianruder.com/optimizing-gradient-descent/

Gradient descent

● Calculates derivatives over all points

● Very slow if data not in memory

Stochastic Gradient Descent

Problem: It is expensive to use all the data at each
step

Solution: Sample mini-batches of m << N points at
each step
● i.i.d. assumption → create mini-batches of size m

them as they come in, i.e.

average gradients over i = k, k+1, …, k+m

SGD is noisy...but...

● it allows us to use much more data to

compensate/average out the noise

● the noise may actually help push us out of local

minima and avoid saddles

SGD free parameters

● Step size
○ constant? large in the beginning, and gets smaller?

● How many passes through the data?

● Sort the data if doing multiple passes?

Neural Network - Logistic Regression

x1

x2

xN

.

.

.

Σ

β1

β2

βN

y

Typically represented as...

x1

x2

xN

.

.

.

β1

β2

βN

y

1 Hidden layer NN

Decomposing the NN

Logistic Regression

Decomposing the NN

Logistic Regression

Decomposing the NN

Logistic Regression

Decomposing the NN

Logistic Regression

Deep Neural Networks - Gradients

● yi = f1,i (x1, x2, xN)

● zj = f2,j (y1, y2, yM)

● Compose layers as follows:

z = f2(f1(x1, x2, xN)),

where f1 = (f1,1, f1,2 , …, f1,M) and f2 = (f2,1, f2,2 , …, f2,P)

Deep Neural Networks - Gradients

z = f2(f1(x1, x2, xN)),

where f1 = (f1,1, f1,2 , …, f1,M) and f2 = (f2,1, f2,2 , …, f2,P)

Compute gradients of the error at each layer

Errors are then be composed using the chain rule.

This is called backpropagation.

Computed automatically on Tensorflow, Torch, etc.

Deep Neural Networks

● Simplest type of neural network - feedforward

neural network

● Add more hidden layers to make it deeper

● Deeper networks can learn more complicated

transformations

Deep Neural Networks

● A sufficiently deep and wide neural network can

approximate ANY function
○ Universal function approximation property

● More nodes/layers → more parameters to infer

● More parameters require more data!

