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Advanced Topics: Big Data



Requirements

● Unix command line (sorry Windows folks)
● jq

https://stedolan.github.io/jq/download/
● Vagrant, VirtualBox, Spark cluster from 

https://github.com/alexholmes/vagrant-hadoop-s
park-hive

● Vowpal Wabbit
https://github.com/JohnLangford/vowpal_wabbit
/wiki/Download

● RCV1-V2 dataset
http://hunch.net/~vw/rcv1.tar.gz

https://stedolan.github.io/jq/download/
https://stedolan.github.io/jq/download/
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/alexholmes/vagrant-hadoop-spark-hive
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
https://github.com/JohnLangford/vowpal_wabbit/wiki/Download
http://hunch.net/~vw/rcv1.tar.gz
http://hunch.net/~vw/rcv1.tar.gz


BIG DATA

● Our approach so far: loading processed datasets 
into memory

● Problems:

○ Useful data may be mixed in with other data
○ Data may need to be cleaned/formatted before using
○ Data may be too large to hold in memory

■ What does that mean? too many columns? too many rows?
■ Do we even need to use all the data?



Website http logs



Site Logs Example

● 6400 requests made by one client over the course 
of ~5 minutes!

● Not all of these go to the CNN servers
○ Fun experiment - turn on an ad-blocker and visit the 

same sites

● Now think about how many requests the servers 
are receiving



Site Logs Example

● Servers just dump all requests into log files and 
carry about their jobs

● Let’s say we want to do some kind of ML with all 
the GET requests we sent out

○ An http GET request is basically asking a server to send 
some kind of information back to the client



Site Logs Example

cat cnn.har | jq '.log.entries[] | .request.method, 
.serverIPAddress' | paste -d" " - - | grep GET | grep -v 
'\"\"' | cut -f2 -d' ' | sed 's/"//g' | sort | uniq -c | sort 
-k1,1nr

● This processes the data line-by-line*
○ * jq processes it chunk-by-chunk, but each chunk is not 

that huge
○ * The sorts are the only part that need the entire data



Bigger data? Fancier pre-processing?

● Even this data was relatively well structured (json 
with a schema)

● What if you have data scraped from the web?
○ Can be MASSIVE

● Need to parse the HTML/CSS/XML to get text 
(images/other media?) and then do NLP.
○ Way slower
○ Can’t do on the command line



Cluster layout



Clusters!!!

● Parsing one page is totally independent of the 
parsing every other page.

● In the previous example, we would not need to 
combine the data until the first sort step.

● If we had k computers, we could go k times faster!

○ modulo overhead in coordination



Word counting - First attempt

dog 10

cat 5

... ...
dog 3

cat 12

... ...

dog 17

cat 8

... ...

dog 10+17+3=30

cat 5+8+12=25

... ...
Worker 1

Worker 2

Worker 3

Master



Problems with the first approach

● All computers are transferring data to the master 
at the same time

➢ Bottleneck in data transfer

● Second step - only one computer is doing all the 
work



Word counting - Step 1

dog 10

cat 5

fish 12

... ...

dog 3

cat 12

fish 6

... ...

dog 17

cat 8

fish 20

... ...
Mapper 1

Mapper 2

Mapper 3



Word counting - Transfer

dog 10

cat 5

fish 12

... ...

dog 3

cat 12

fish 6

... ...

dog 17

cat 8

fish 20

... ...
Worker 1

Worker 2

Worker 3

(dog, 10)
(cat, 8)

(dog, 3)
(fish, 20)(cat, 12)

(fish, 12)



Word counting - Step 2

cat 5+8+ 12

... ...
fish 6+12+20

... ...

dog 17+10+3

... ...
Reducer 1

Reducer 2

Reducer 3



MapReduce

● Step 1: Map Step 2: Reduce

● Balanced transfer of data and computation load 
in the Reduce step

● Important to ensure each word gets mapped to 
the same reducer node

○ Hash function f: <word> → {1,2, …, #reducer nodes}
○ random assignment for load balancing



MapReduce, formally



Map Step

● Each map step iterates through each word and 
spits out the key, value pair: (<word>, 1)
○ The value is the constant 1 for each word

● E.g. Mapper 1 input: “The quick brown dog jumps 
over the lazy dog”

● Mapper 1 output: (the, 1), (quick, 1), (brown, 1), 
(dog, 1), (jumps, 1), (over, 1), (the, 1), (lazy, 1), 
(dog, 1)



GroupBy Step

● Each mapper sorts the pairs by the keys:

(brown, 1), (dog, 1), (dog, 1), (jumps, 1), …

● Optional step (combiner): Combine pairs with the 
same keys at the mapper (usually using the same 
logic as the reducer)

(brown, 1), (dog, 2), (jumps, 1)



Distribute to Reducers

● Words are pseudo-randomly assigned to reducers 
using a hash function:
○ Important that all mappers use the same pseudo 

random hash function.

● Reducer 1 will see:

(dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

from mapper 1, mapper 2, and so on...



Reducers

● Reducer 1 input:
(dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

● Sort again, combine values with the same key:
(dog, [2, 4]), (fish, [3]), (jumps, [1]), (lazy, [1, 2])

● Sum values in list of each value



Distributed File Systems

● The input and output data were distributed 
across workers

● This is actually a feature of the file system
○ Based on Google File System (GFS)
○ Open source - Hadoop Distributed File System (HDFS)

● Files are split into chunks, replicated and stored 
on random nodes



Distributed File Systems

● When a map task comes in, each mapper takes 
the chunks on its local disk and works on those

● Also provides redundancy against failures
○
○ If a machine goes down, all the data on it is stored on 

other nodes and can be re-processed as needed



Hadoop versus Spark

● Hadoop needs to do 
Map→Reduce→Map→Reduce

● Hadoop writes the output out to disk after every 
map and reduce step

● Spark can do Map→Reduce→Reduce→Reduce

● Spark holds everything in memory
○ Less File I/O speeds things up a lot



Hadoop and Spark

● Can use these paradigms to implement many 
kinds of algorithms on massive datasets

○ Numerical matrix algebra
○ Relational algebra type (SQL) operations - Joins, 

GroupBys, etc…
○ Machine Learning

■ PageRank
■ Random Forests

● Typically not great for algorithms that iteratively 
update parameters/state



How to learn with big data

● Large dataset processed - how to do ML?

○ possibly stored on a distributed file system

● Do you really need to use all the data to train?

○ Signal-to-noise level
○ Number of features
○ Complexity (#free parameters) of the model



No? Sample!

● Think before sampling:

○ Leakage of information between train and test splits?
○ Random sampling on <index> and selecting all rows for 

given values of <index>

● shuf -n N inputfile > outputfile



Reservoir Sampling

● Ongoing stream of data:
○ n points have passed by
○ want a uniform sample of k points such that
○ every point has probability of k/n



Reservoir Sampling Algorithm

● Let the sample be S[1], …, S[k]

● Store first k points in S[1], …, S[k], then

● Let i be the count of the current item

● Randomly draw an integer j from [ 1, i ]

● If j < k, then overwrite S[j] ← S[i]



Yes? Online learning!

● Data too big to fit in memory - need to process in 
chunks

○ similar to pre-processing

● Added benefit → model parameters are 
continuously fit to newer data

○ If the underlying data distribution changes, the model 
will catch on automatically (eventually)



Gradient descent

● Example: Logistic regression

● Minimize some loss function

○ Recall Lecture 1



Gradient descent

● Intuition: “go downhill taking steps in the 
steepest direction”



Gradient descent

● The direction is given by the negative of the 
derivative (gradient in multiple dimensions)

● Issues
○ Local minima / Non-unique solutions



Gradient descent

● Issues
○ Saddle points

(http://sebastianruder.com/optimizing-gradient-descent/)

http://sebastianruder.com/optimizing-gradient-descent/


Gradient descent

● Calculates derivatives over all points

● Very slow if data not in memory



Stochastic Gradient Descent

Problem: It is expensive to use all the data at each 
step

Solution: Sample mini-batches of m << N points at 
each step 
● i.i.d. assumption → create mini-batches of size m 

them as they come in, i.e.

average gradients over i = k, k+1, …, k+m



SGD is noisy...but...

● it allows us to use much more data to 

compensate/average out the noise

● the noise may actually help push us out of local 

minima and avoid saddles



SGD free parameters

● Step size
○ constant? large in the beginning, and gets smaller?

● How many passes through the data?

● Sort the data if doing multiple passes?



Neural Network - Logistic Regression
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Typically represented as...
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1 Hidden layer NN



Decomposing the NN

Logistic Regression



Decomposing the NN

Logistic Regression



Decomposing the NN

Logistic Regression



Decomposing the NN

Logistic Regression



Deep Neural Networks - Gradients

● yi = f1,i (x1, x2, xN)

● zj = f2,j (y1, y2, yM)

● Compose layers as follows:

z = f2( f1(x1, x2, xN) ),

where f1 = (f1,1, f1,2 , …, f1,M) and f2 = (f2,1, f2,2 , …, f2,P)



Deep Neural Networks - Gradients

z = f2( f1(x1, x2, xN) ),

where f1 = (f1,1, f1,2 , …, f1,M) and f2 = (f2,1, f2,2 , …, f2,P)

Compute gradients of the error at each layer

Errors are then be composed using the chain rule.

This is called backpropagation.

Computed automatically on Tensorflow, Torch, etc.



Deep Neural Networks

● Simplest type of neural network - feedforward 

neural network

● Add more hidden layers to make it deeper

● Deeper networks can learn more complicated 

transformations



Deep Neural Networks

● A sufficiently deep and wide neural network can 

approximate ANY function
○ Universal function approximation property

● More nodes/layers → more parameters to infer

● More parameters require more data!


