UW MLEARN 410: Applied Machine Learning

Advanced Topics: Big Data

UNIVERSITY of WASHINGTON

Requirements

- Unix command line (sorry Windows folks)
- jq <u>https://stedolan.github.io/jq/download/</u>
- Vagrant, VirtualBox, Spark cluster from <u>https://github.com/alexholmes/vagrant-hadoop-s</u> <u>park-hive</u>
- Vowpal Wabbit

https://github.com/JohnLangford/vowpal_wabbit /wiki/Download

• RCV1-V2 dataset

http://hunch.net/~vw/rcv1.tar.gz

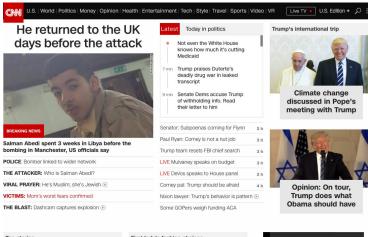
BIG DATA

• **Our approach so far:** loading processed datasets into memory

• Problems:

- Useful data may be mixed in with other data
- Data may need to be cleaned/formatted before using
- Data may be too large to hold in memory
 - What does that mean? too many columns? too many rows?
 - Do we even need to use all the data?

Website http logs



Katy Perry explains feud with Taylor Swift (>)

'Game of Thrones' Season 7 first look

News and buzz

Melania's veil adheres to protocol
No headscarves in Saudi Avabia
She's getting rave reviews in the Saudi press
Opinion: Why Saudi Arabia loves Melania
Internet reacts to Melania's hand gesture
Photos of the first lady

40 OFF

NORTON™

PROTECTION THAT WON'T

Advertisement

SECURITY

SLOW DOWN YOUR

ANTHONY BOURDAIN

SUNDAY 8

COMPUTER

Elements Console	Sources Network » 8 107 🛆 26 🗄 🗙	
🖲 🛇 🎟 🍟 View: 🎞	E Preserve log Disable cache Offline No throt	
Filter Rege	x 🗌 Hide data URLs	
XHR JS CSS Img Media	Font Doc WS Manifest Other	
100000 ms 200000	ms 300000 ms 400000 ms 500000 ms	
Name	× Headers Preview Response Cookies Timing	
adaptvinfo.js	▼ General	
ad_source.js	Request URL: http://www.cnn.com/	
ad_source.js	Request Method: GET Status Code: 200 0K	
sam.js	Remote Address: 151.101.41.67:80	
sam.js	Referrer Policy: no-referrer-when-downgrade	
PMAdMgr.js?adtype=13&publd	▼ Response Headers view source	
showad.js	Accept-Ranges: bytes	
vpaid.js?fusion=1.0	access-control-allow-origin: * Age: 120	
PugMaster?rnd=62118257&p=	cache-control: max-age=60	
sam.js	Connection: keep-alive	
vpaid-adapter.min.js	Content-Encoding: gzip	
jsvpaid.js?aid=59199&sid=0&c	Content-Length: 29858 content-security-policy: default-src 'self' blob:	
sam.js	https://*.cnn.com:* http://*.cnn.com:* *.cnn.	
sam.js	io:* *.cnn.net:* *.turner.com:* *.turner.io:*	
vpaid.js?fusion=1.0	<pre>*.ugdturner.com:* *.vgtf.net:*; script-src 'u nsafe-eval' 'unsafe-inline' 'self' *; style-sr</pre>	
IASVideo.js?anld=8987&advld	c 'unsafe-inline' 'self' blob: *; child-src 's	
	<pre>elf' blob: *; frame-src 'self' *; object-src 'self' *; img-src 'self' data: blob: *; media</pre>	
jsvpaid.js?aid=59199&sid=0&c	-src 'self' blob: *; font-src 'self' data: *;	
sam.js	connect-src 'self' *;	
sam.js	Content-Type: text/html; charset=utf-8 Date: Wed, 24 May 2017 16:40:33 GMT	
vpaid.js?fusion=1.0	Fastly-Debug-Digest: 46be59e687681f2cbdc5286ab50	
IASVideo.js?anId=8987&advId:	024ed035dc360065b1aec7ce355bf418daeb9	
jsvpaid.js	<pre>Set-Cookie: countryCode=US; Domain=.cnn.com; P ath=/</pre>	
411f1e96-3bde-4d85-b17e-63	Set-Cookie: geoData=san francisco CA 94105 US N	
adaptvInfo.js	A; Domain=.cnn.com; Path=/	
ad_source.js	Vary: Accept-Encoding, Fastly-SSL, Fastly-SSL Via: 1.1 varnish	
jsvpaid.js	Via: 1.1 varnish	
411f1e96-3bde-4d85-b17e-63	X-Cache: HIT, HIT	
adaptvlnfo.js	X-Cache-Hits: 2, 211 x-content-type-options: nosniff	
ad_source.js	X-Served-By: cache-iad2149-IAD, cache-sjc3125-	
domestic.json?callback=CNNB	SJC	
vpaid-adapter.min.js	x-servedByHost: ::ffff:172.17.28.3 X-Timer: S1495644033.064512.VS0.VE0	
optivpaid.js?cb=191020749	x-Timer: S1495644033.064512,VS0,VE0 x-xss-protection: 1; mode=block	
optiads-3.1.6.js	Request Headers view source	
crypto-js-3.1.9.js	Accept: text/html,application/xhtml+xml,applica	
opti-vast-client-1.1.6.js	<pre>tion/xml;q=0.9,image/webp,*/*;q=0.8 Accept-Encoding: gzip, deflate, sdch</pre>	
jsvpaid.js?aid=26707&sid=0&c		
vpaid.js?fusion=1.0	Accept-Language: en-US, en; q=0.8 Cache-Control: max-age=0	
vpaid.js?fusion=1.0	Connection: keep-alive	
jsvpaid.js	Cookie: s_ppv=33; countryCode=US; geoData=san f	
6407 requests 7.8 MB transferred.	rancisco CA 94105 US NA; s_cc=true; sp_cmd=/mm . s/get_site_js?v=1&account_id=328&abp=true&refe	

Site Logs Example

- 6400 requests made by one client over the course of ~5 minutes!
- Not all of these go to the CNN servers
 - Fun experiment turn on an ad-blocker and visit the same sites
- Now think about how many requests the servers are *receiving*

Site Logs Example

- Servers just dump all requests into log files and carry about their jobs
- Let's say we want to do some kind of ML with all the *GET* requests we sent out
 - An http GET request is basically asking a server to send some kind of information back to the client

Site Logs Example

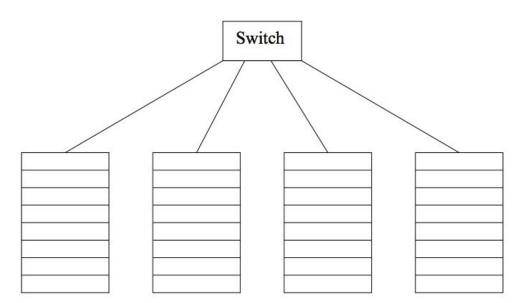
cat cnn.har | jq '.log.entries[] | .request.method, .serverIPAddress' | paste -d" " - - | grep GET | grep -v '\"\"' | cut -f2 -d' ' | sed 's/"//g' | sort | uniq -c | sort -k1,1nr

- This processes the data line-by-line*
 - * jq processes it chunk-by-chunk, but each chunk is not that huge
 - * The *sorts* are the only part that need the entire data

Bigger data? Fancier pre-processing?

- Even this data was relatively well structured (json with a schema)
- What if you have data scraped from the web?
 Can be MASSIVE
- Need to parse the HTML/CSS/XML to get text (images/other media?) and then do NLP.
 - Way slower
 - Can't do on the command line

Cluster layout

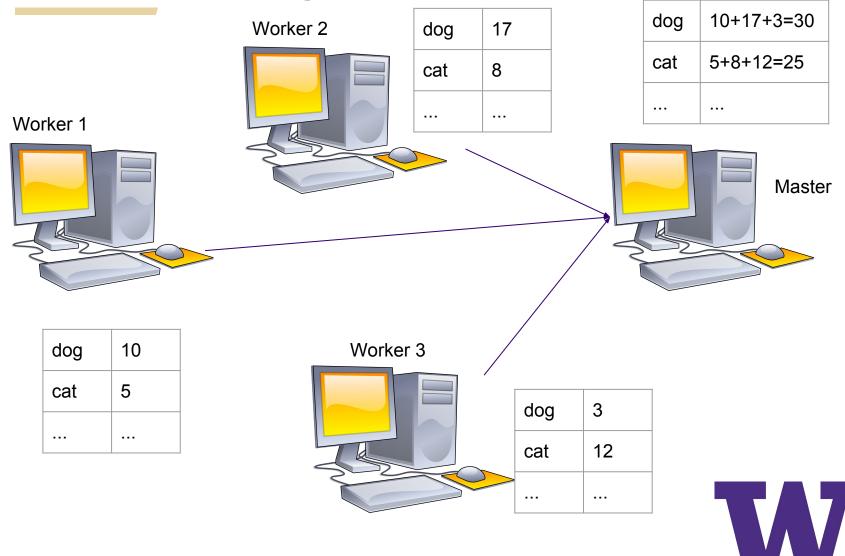


Racks of compute nodes

Clusters!!!

- Parsing one page is totally independent of the parsing every other page.
- In the previous example, we would not need to combine the data until the first *sort* step.
- If we had *k* computers, we could go *k* times faster!
 - modulo overhead in coordination

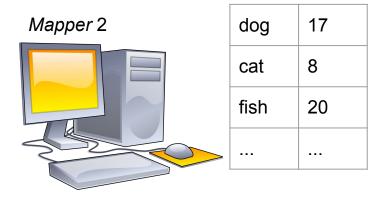
Word counting - First attempt



Problems with the first approach

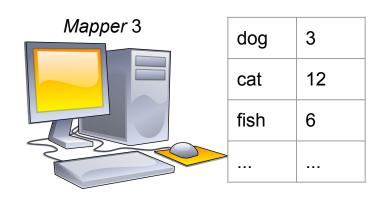
- All computers are transferring data to the master at the same time
 - > Bottleneck in data transfer
- Second step only one computer is doing all the work

Word counting - Step 1

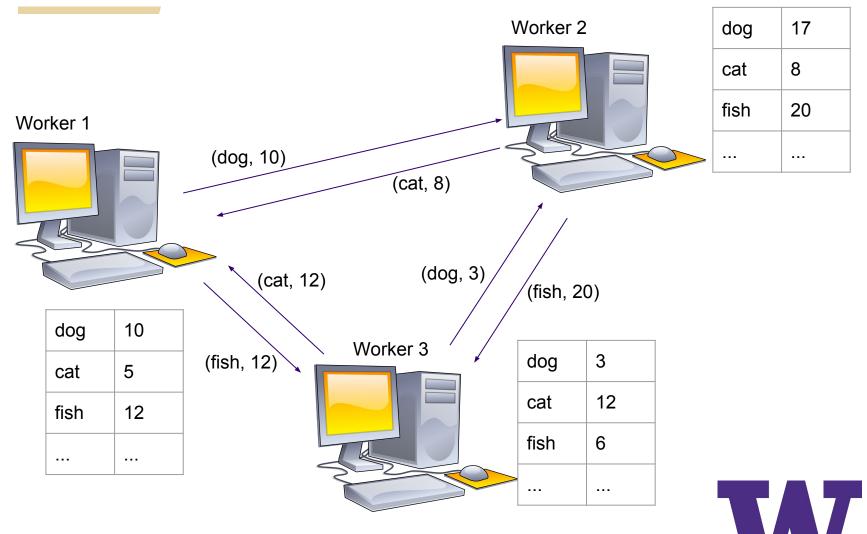


Mapper 1

dog	10
cat	5
fish	12



Word counting - Transfer



Word counting - Step 2

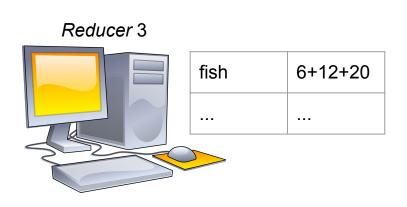
dog

. . .

Reducer 2

Reducer 1

cat	5+8+ 12



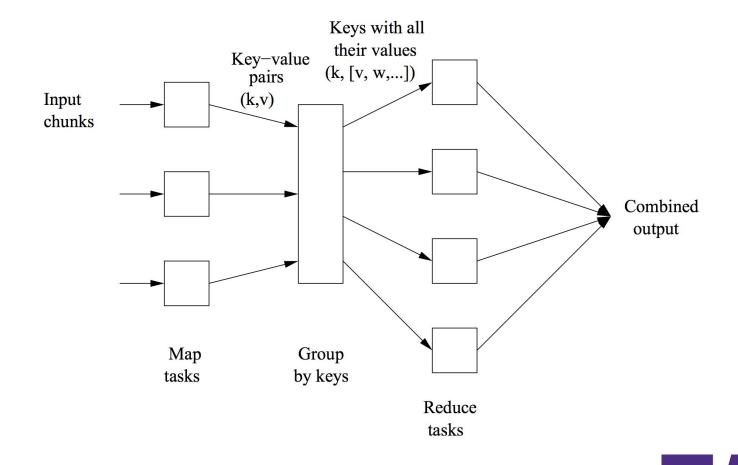
17+10+3

...

MapReduce

- Step 1: Map Step 2: Reduce
- Balanced transfer of data and computation load in the Reduce step
- Important to ensure each word gets mapped to the same reducer node
 - \circ Hash function f: <word> \rightarrow {1,2, ..., #reducer nodes}
 - random assignment for load balancing

MapReduce, formally



Map Step

- Each map step iterates through each word and spits out the key, value pair: (<word>, 1)
 The value is the constant 1 for each word
- E.g. Mapper 1 input: "The quick brown *dog* jumps over the lazy dog"
- Mapper 1 output: (the, 1), (quick, 1), (brown, 1), (dog, 1), (jumps, 1), (over, 1), (the, 1), (lazy, 1), (dog, 1)

• Each mapper sorts the pairs by the keys:

(brown, 1), (dog, 1), (dog, 1), (jumps, 1), ...

• Optional step (combiner): Combine pairs with the same keys at the mapper (usually using the same logic as the reducer)

(brown, 1), (dog, 2), (jumps, 1)

Distribute to Reducers

- Words are pseudo-randomly assigned to reducers using a hash function:
 - Important that all mappers use the same pseudo random hash function.
- Reducer 1 will see:

(dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

from mapper 1, mapper 2, and so on...

• Reducer 1 input: (dog, 2), (jumps, 1), (lazy, 1), (dog, 4), (fish, 3), (lazy, 2)

• Sort again, combine values with the same key: (dog, [2, 4]), (fish, [3]), (jumps, [1]), (lazy, [1, 2])

• Sum values in list of each value

Distributed File Systems

- The input and output data were distributed across workers
- This is actually a feature of the file system
 - Based on Google File System (GFS)
 - Open source Hadoop Distributed File System (HDFS)
- Files are split into chunks, replicated and stored on random nodes

Distributed File Systems

- When a map task comes in, each mapper takes the chunks on its local disk and works on those
- Also provides redundancy against failures
 - 0
 - If a machine goes down, all the data on it is stored on other nodes and can be re-processed as needed

Hadoop versus Spark

- Hadoop needs to do Map→Reduce→Map→Reduce
- Hadoop writes the output out to disk after every map and reduce step
- Spark can do Map→Reduce→Reduce→Reduce
- Spark holds everything in memory
 Less File I/O speeds things up a lot

Hadoop and Spark

- Can use these paradigms to implement many kinds of algorithms on massive datasets
 - Numerical matrix algebra
 - Relational algebra type (SQL) operations Joins, GroupBys, etc...
 - Machine Learning
 - PageRank
 - Random Forests
- Typically not great for algorithms that iteratively update parameters/state

How to learn with big data

- Large dataset processed how to do ML?
 - possibly stored on a distributed file system
- Do you really need to use all the data to train?
 - Signal-to-noise level
 - Number of features
 - Complexity (#free parameters) of the model

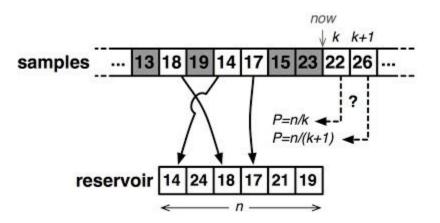
No? Sample!

- Think before sampling:
 - Leakage of information between train and test splits?
 - Random sampling on <index> and selecting all rows for given values of <index>
- shuf -n N inputfile > outputfile

Reservoir Sampling

• Ongoing stream of data:

- *n* points have passed by
- want a uniform sample of *k* points such that
- every point has probability of *k/n*



Reservoir Sampling Algorithm

- Let the sample be *S*[*1*], ..., *S*[*k*]
- Store first *k* points in *S*[1], ..., *S*[k], then
- Let *i* be the count of the current item
- Randomly draw an integer *j* from [1, *i*]
- If j < k, then overwrite $S[j] \leftarrow S[i]$

Yes? Online learning!

 Data too big to fit in memory - need to process in chunks

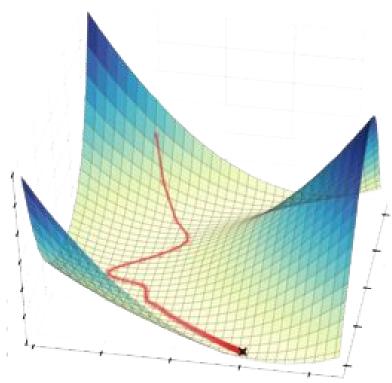
• similar to pre-processing

- Added benefit → model parameters are continuously fit to newer data
 - If the underlying data distribution changes, the model will catch on automatically (eventually)

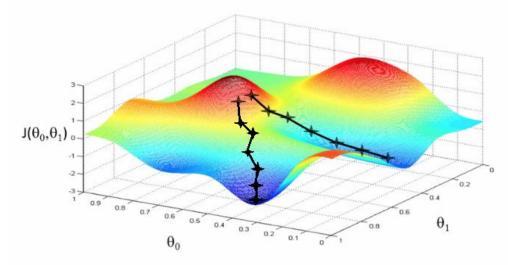
- Example: Logistic regression
- Minimize some loss function
 - Recall Lecture 1

$$\mathcal{L}(X) := \frac{1}{N} \sum_{i=1}^{N} -y_i \log(f(\beta^T X_i)) - (1 - y_i) \log(1 - f(\beta^T X_i))$$

• Intuition: "go downhill taking steps in the steepest direction"



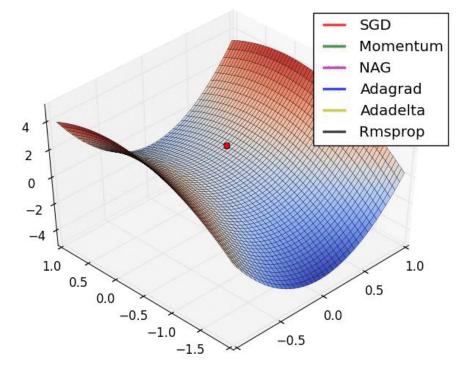
- The direction is given by the negative of the derivative (*gradient* in multiple dimensions)
- Issues
 - Local minima / Non-unique solutions



• Issues

• Saddle points

(http://sebastianruder.com/optimizing-gradient-descent/)



• Calculates derivatives over all points

$$\mathcal{L}(X) := \frac{1}{N} \sum_{i=1}^{N} -y_i \log(f(\beta^T X_i)) - (1 - y_i) \log(1 - f(\beta^T X_i))$$

• Very slow if data not in memory

Stochastic Gradient Descent

Problem: It is expensive to use all the data at each step

Solution: Sample mini-batches of *m* << *N* points at each step

 i.i.d. assumption → create mini-batches of size m them as they come in, i.e.

average gradients over *i* = *k*, *k*+1, ..., *k*+*m*

SGD is noisy...but...

- it allows us to use *much* more data to compensate/average out the noise
- the noise may actually help push us out of local minima and avoid saddles

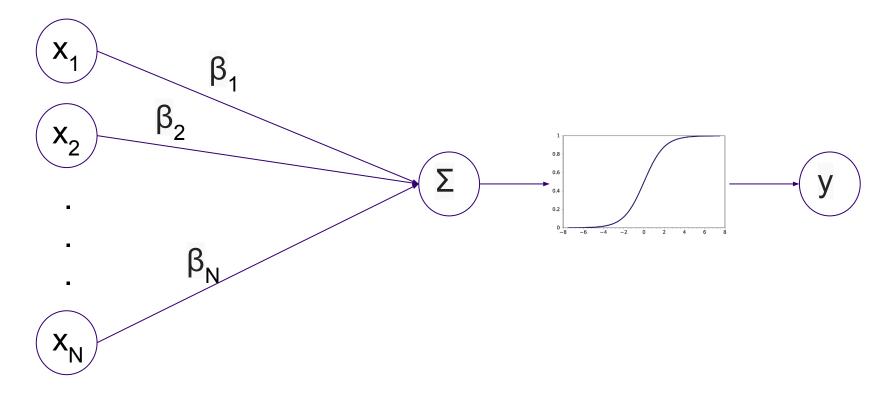
SGD free parameters

- Step size
 - constant? large in the beginning, and gets smaller?

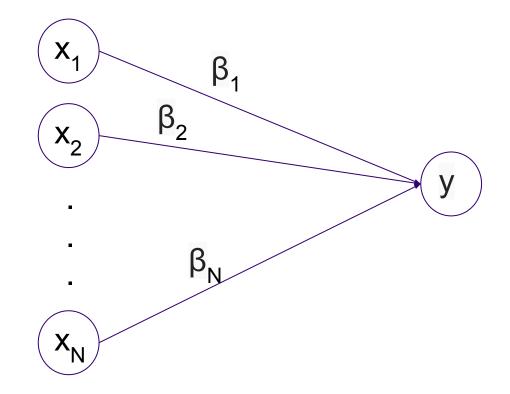
• How many passes through the data?

• Sort the data if doing multiple passes?

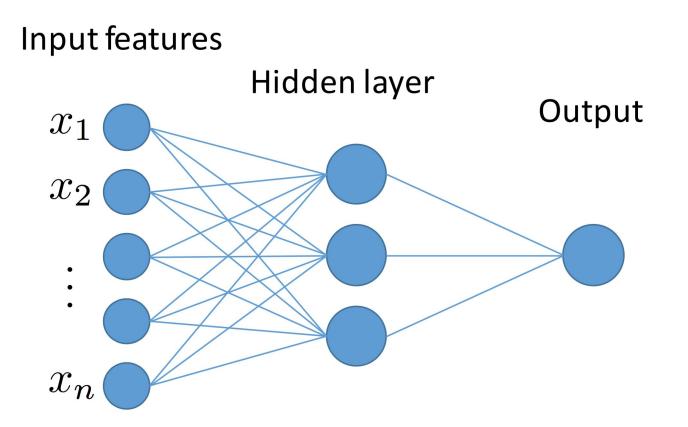
Neural Network - Logistic Regression

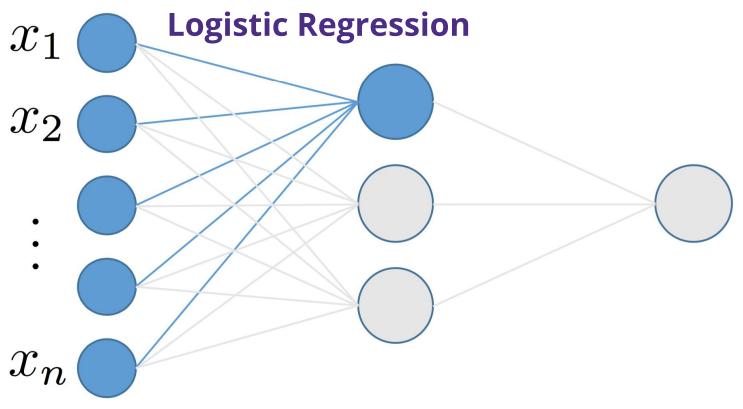


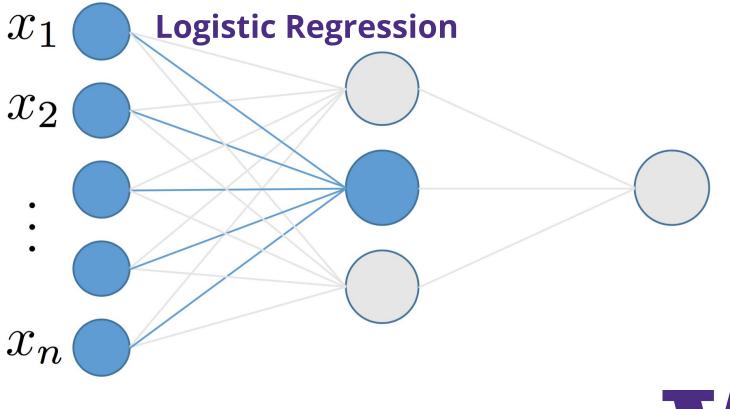
Typically represented as...

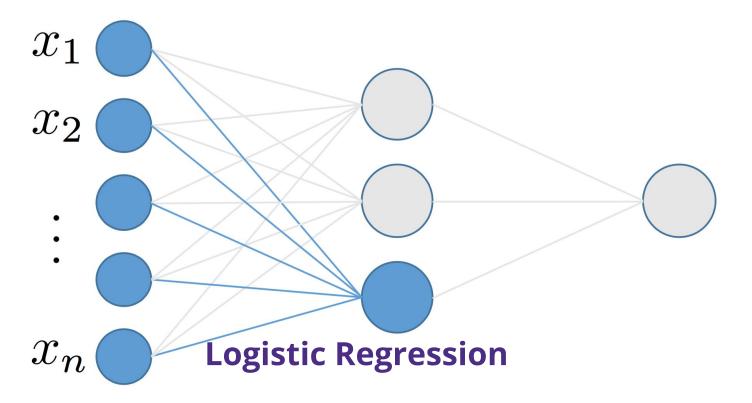


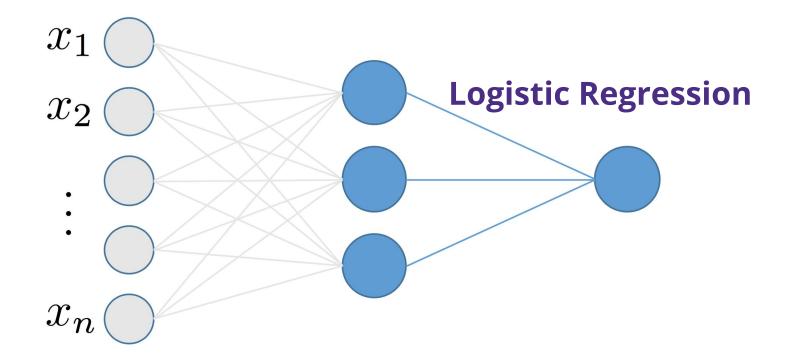
1 Hidden layer NN











Deep Neural Networks - Gradients

- $y_i = f_{1,i}(x_1, x_2, x_N)$
- $\mathbf{z}_{j} = \mathbf{f}_{2,j} (\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{M})$

• Compose layers as follows:

$$\underline{z} = \underline{f}_{2}(\underline{f}_{1}(x_{1}, x_{2}, x_{N})),$$

where $\underline{f}_{1} = (f_{1,1}, f_{1,2}, ..., f_{1,M})$ and $\underline{f}_{2} = (f_{2,1}, f_{2,2}, ..., f_{2,P})$

Deep Neural Networks - Gradients

$$\underline{z} = \underline{f}_{2}(\underline{f}_{1}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{N})),$$

where $\underline{f}_{1} = (f_{1,1}, f_{1,2}, ..., f_{1,M})$ and $\underline{f}_{2} = (f_{2,1}, f_{2,2}, ..., f_{2,P})$

Compute gradients of the error at each layer Errors are then be composed using the chain rule. This is called *backpropagation*.

Computed automatically on Tensorflow, Torch, etc.

Deep Neural Networks

• Simplest type of neural network - *feedforward neural network*

• Add more hidden layers to make it *deeper*

• Deeper networks can learn more complicated transformations

Deep Neural Networks

- A sufficiently deep and wide neural network can approximate *ANY* function
 - Universal function approximation property

● More nodes/layers → more parameters to infer

• More parameters require more data!

