Topic Models

Zach Alexander - UW Machine Learning

May 4, 2017

About Me

Principal Data Scientist – Salesforce.com

My team supports the entire Search organization.

- Search relevance/ranking
- Query Understanding
 - Entity prediction
 - Query expansion (synonyms, did you mean?, etc..)
 - Document understanding

Past

- Ph.D. in Applied Math from University of Colorado
 - Computational Topology (not machine learning)
- Data Scientist at Seagate Technology
 - Hard Disk Quality Modeling
- Certificate in Data Science @ UW (2013)
- Data Scientist at Microsoft
 - Real-time media @ Skype
 - Call quality / root-cause analysis
- Instructor at Galvanize
 - 12-week Data Science 'boot camp'

Goals for Today

- Solid, intuitive understanding of SVD
 - Which leads to some intuition about all topic models
- Practical experience implementing topic models in R
 - Singular Value Decomposition
 - Non-negative Matrix Factorization
 - Latent Dirichlet Allocation
- Practical experience *interpreting* topic models in R
- NOT theoretical foundations of the three algorithms.

Singular Value Decomposition

• The most fundamental matrix decomposition

$$M_{\text{mxn}} = U_{\text{mxr}} * \sum_{\text{rxr}} * V^T$$

- r is the rank of M (number of linearly independent columns/rows)
- U is column-orthonormal and maps rows of M to latent features
- Σ is diagonal, and measures the strength of the latent features.
- V^T is row-orthonormal and maps latent features to columns of M

Nonnegative Matrix Factorization

• A more heuristic matrix factorization approach

$M = W * H_{m \times n}$

- k is the desired number of latent features
- W maps rows of M to latent features
- H maps latent features to columns of M
- Add the constraint that W, H >= 0.

Algorithm:

- 1. Hold W constant, solve for H
- 2. Clip H below at 0.
- 3. Hold H constant, Solve for W.
- 4. Clip W from below at 0.
- 5. Repeat...

Latent Dirichlet Allocation

- LDA is a probabilistic approach to topic modeling.
- Assume the following:
 - Each document is a specific mixture of K topics. For example, some document might be 30% politics, and 70% economics
 - Each topic assigns a probability to each word. For example:
 - P(democrat | topic='politics') = .07
 - P(playoffs | topic='politics') = .00003

•
$$P(w_j | doc_i) = \sum_{k \in topics} P(w_j | top_k) * P(top_k | doc_i)$$

- This looks just like a matrix factorization. You need to know the mapping of words to topics and the mapping of topics to documents.
- 'Learn' the mappings via maximum likelihood estimation