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Intro
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• The Curse of Dimensionality
o Distances between points grow very fast
o Analogy: Finding penny on a line, a football field, in a building

• Ways to reduce dimensionality
o Feature Subset Selection

• O(2n)if we try all
• Forward selection – add feature that decreases the error the most
• Backward selection – remove feature that decreases the error the 

most (or increases it only slightly)
• But selection is greedy not necessarily optimal

o Feature Extraction
• PCA 
• LDA
• FA
• MDS



Principal 
Component 

Analysis (PCA)



What It Does
• Comes up with a new coordinate system
• Performs a rotation of your dataset that 

decorrelates the features
• Allows you to reduce the dimensionality of your 

data
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Uses
• Dimensionality reduction
• Pattern recognition (e.g. Eigenfaces)
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Cinematography
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The Pareto Principle
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PCA
• Creates new features that are linear combinations 

of the original features
• New features are orthogonal to each other
• Keep the new features that account for a large 

amount of the variance in the original dataset
• Re-base the dataset’s coordinate system in a new 

space defined by its lines of greatest variance
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Visualization
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Principal Components
• Linearly uncorrelated variables
• 1st principal component has the largest possible 

variance
• Each succeeding component has highest possible 

variance. Constraint: Must be orthogonal to all the 
preceding components
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Observation About 
Vectors

• Almost all vectors change direction when multiplied 
by a matrix

• Certain exceptional vectors (which are called 
eigenvectors) remain in the same direction
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Eigenvector
• A vector that when multiplied by a given matrix 

gives a scalar multiple of itself
• The 0 vector is never considered an eigenvector
• The scalar multiple is called its eigenvalue λ.
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Eigenvalue
• A scalar
• Scale factor corresponding to a particular 

eigenvector
• Merely elongates or shrinks or reverses v, or leaves it 

unchanged
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Eigens Expressed As An 
Equation

• A: a square matrix
• x: a nonzero vector (“eigenvector”)
• λ: a nonzero scalar (“eigenvalue of A”)

Ax = λx
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Graphical Depiction
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Example of Eigenvalue & 
Eigenvector Pair
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Identity Matrix
• A square matrix that looks like this:
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Eigen
• German for “very own”
• “My very own apartment”: 

»Meine eigene Wohnung«
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Characteristic Polynomial
• Start with Aλ = λv
• I is the identity matrix
• Noting that Iv = v, rewrite as (A – λI)v = 0
• A – λI is square matrix

		pA(λ)=|A−λI |
• | | is notation for determinant
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Characteristic Equation of A

		pA(λ)=0
The roots of this n-degree 
polynomial are the 
eigenvalues of A.

Since v is nonzero, A-λI is 
singular (non invertible); 
therefore its determinant is 0.

20



Example Calculation of 
Eigenvalues

Solutions are λ= -1 and λ = -2
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Eigenvalue Equation
• Use to obtain the corresponding eigenvector v for 

each eigenvalue λ

			(A–λI)v = 	0
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Eigenvalues and 
Eigenvectors in R

• > eigen(x)

• demo
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R Functions for PCA
• prcomp()    - Uses SVD, the preferred method
• Display shows standard deviations of the 

components
• > pr<-prcomp(dataset, scale=TRUE)

• Transform the data into the new coordinate system:
> new<-pr$x[,1:2]

princomp() uses covariance matrix—for 
compatibility with S-PLUS
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Tips
• Dataset can have numeric values only. Need to 

exclude nonnumeric features with brackets or 
subset.

• modelname<-princomp(dataset)

• summary(modelname) gives proportion of the total 
variance explained by each component.

• Modelname$loadings
• Modelnames$scores
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Options
• center

• scale

• scale.
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Component Loadings
• Eigenvectors �√Eigenvalues

• Correlation between the component 
and the original features: how much 
variation in a feature is explained by a 
component
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Preparation
• Center the variables
• Scale the variables
• Skewness transformation: makes the distribution 

more symmetrical
• Box-Cox transformation: makes the distribution more 

normal like
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Scoring
• V: the matrix whose columns are the eigenvectors 

of the covariance matrix. Each eigenvector is 
normalized to have unit length.

• VT now defines a rotation
• Start with original dataset x.
• Calculate mean of each column to obtain row 

vector m.
• Subtract m from each row of x to obtain z. Multiply z

by VT to obtain the new matrix of new coordinates 
c.
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Covariance

(Numerator can be 
expressed as XXT)
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Covariance Matrix
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Principal Components
• The first principal component is the eigenvector of 

the covariance matrix that has the largest 
eigenvalue

• This vector points into the direction of the largest 
variance of the data

• The magnitude of this vector equals the 
corresponding eigenvalue.

• The second largest eigenvector is orthogonal to the 
largest eigenvector, and points into the direction of 
the second largest spread of the data.
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Scree Plot
• Plots the variances against the number of the 

principal component
• Used to visiually assess which components explain 

most of the variability
• In R:     fit <- princomp(dataset)

screeplot(fit)
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Eigenfaces
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Multidimensional 
Scaling



Overview of MDS
• You are given pairwise relationships between cases, 

e.g.
o Distance between cities
o Measures of similarity/dissimilarity
o Importance
o Preferences

• MDS lays these cases out as points in an n-
dimensional space

• Traditional use is with n=2 or n=3 to visualize 
relationships in the data for exploratory purposes

• In ML we can also use to reduce dimensionality of 
data
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Contrast with PCA
• PCA reduces dimensionality while retaining 

variance
• MDS

o Can be used to introduce dimensionality
o Can be used to reduces dimensionality while retaining the relative 

distances
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Distances Between Some 
European Cities
1 2 3 4 5 6 7 8 9 10

1 0 569 667 530 141 140 357 396 570 190

2 569 0 1212 1043 617 446 325 423 787 648

3 667 1212 0 201 596 768 923 882 714 714

4 530 1043 201 0 431 608 740 690 516 622

5 141 617 596 431 0 177 340 337 436 320

6 140 446 768 608 177 0 218 272 519 302

7 357 325 923 740 340 218 0 114 472 514

8 396 423 882 690 337 272 114 0 364 573

9 569 787 714 526 436 519 472 364 0 755

10 190 648 714 622 320 302 514 573 755 0
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Actual locations
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For Dimensionalty
Reduction

• Original data matrix – Each column represents a 
feature. Each of the N rows represents a point.

• Create Dissimilarity Matrix storing the dist() 
distances d0 between the points. The R  function 
does this.
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Performing MDS in R
• k is number of dimensions you want for the 

reconstructed space
• d is full symmetric Dissimilarity Matrix

• cmdscale(d, k=3)

• The c in cmdscale stands for “classical”
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Non-Metric MDS
• Exact distances in the reconstructed space can be  

off a little
• Imagine springs of the original distance between 

the points. Want to minimize the overall stress
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Spring model
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Common Stress Metrics
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NMDS in R
• dmat is lower-triangle Dissimilarity Matrix
• nmds(dmat)
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tsne
t-Distributed Stochastic 
Neighbor Embedding



Basic Idea
• Maps points in n dimensions onto a visualizable 2 or 

3 dimensions
• Computes probability distribution of each point 

being similar to each other point
• Does this for both the hi dim and lo dim 

representations
• Then minimizes divergence between the high 

dimension and low dimension distributions
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• Euclidean distance
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• Model the distance as having a probability distribution
• Treat measured distance the peak of a symmetric bell 

curve
• Assign lower variances to points that are in denser areas
• Originally the low dim and hi dim representations each 

used Gaussian distributions
• Refinement of the technique now uses the heavier-tailed 

Student’s t-distribution for the lo dim

tsne takes a Probabilistic 
Approach to Similarity
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tsne in R
• Performs tsne dimensionality reduction on an R 

matrix or a "dist" object
tsne(X, initial_config = NULL, k = 2, 

initial_dims = 30, perplexity = 30,
max_iter = 1000, min_cost = 0, 
epoch_callback = NULL, whiten = TRUE, 
epoch=100)

53



R Demo of tsna and 
Comparison with PCA
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Factor Analysis
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Factor Analysis
• Discovers latent factors that influence the features
• Each original feature is a linear combination of the 

factors
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