Dimensionality
Reduction



Intro

The Curse of Dimensionality

o Distances between points grow very fast
o Analogy: Finding penny on a line, a football field, in a building

Ways to reduce dimensionality
o Feature Subset Selection
« O(2)if we try all
« Forward selection — add feature that decreases the error the most

 Backward selection —remove feature that decreases the error the
most (or increases it only slightly)

« But selection is greedy not necessarily optimal
o Feature Extraction

« PCA

« LDA

 FA

« MDS
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Principal
Component
Analysis (PCA)



What It Does

Comes up with a new coordinate system

Performs a rotation of your dataset that
decorrelates the features

Allows you to reduce the dimensionality of your
data
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Uses

* Dimensionality reduction
« Paftern recognition (e.g. Eigenfaces)
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Cinematography
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The Pareto Principle

20%

Causes



PCA

Creates new features that are linear combinations
of the original features

New features are orthogonal to each other

Keep the new features that account for a large
amount of the variance in the original dataset

Re-base the dataset’s coordinate system in a new
space defined by its lines of greatest variance
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Visualization
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Principal Components

* Linearly uncorrelated variables

« |st principal component has the largest possible
variance

« Each succeeding component has highest possible
variance. Constraint: Must be orthogonal to all the
preceding components
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Observation About
Vectors

magnitude

KN sense
L
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; , initia
point

direction

« Almost all vectors change direction when multiplied
by a matrix

« Certain exceptional vectors (which are called
eigenvectors) remain in the same direction
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Eigenvector

« A vector that when multiplied by a given matrix
gives a scalar multiple of itself

 The 0 vectoris never considered an eigenvector
* The scalar multiple is called its eigenvalue A.
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Eigenvalue

e A scalar

« Scale factor corresponding to a particular
eigenvector

* Merely elongates or shrinks or reverses v, or leaves it
unchanged
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Eigens Expressed As An
Equation

* A:asquare matrix
* X:.a nonzero vector (“eigenvector”)
* A:anonzero scalar (“eigenvalue of A")

AX = AX
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Graphical Dep1ct1on
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Example of Eigenvalue &
Eigenvector Pair

2 4 —2

Ax = Ax




[dentity Matrix

* A square matrix that looks like this:

i 0 0 O

_ O |\ 0 O

L = O 0 1 O
0O 0 0 |

Get the pattern?

It's ones down this main diagonal }
and zeros everywhere else.



Eigen
« German for “very own”

* "My very own apartment’:
»Meine eigene Wohnung
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Characteristic Polynomial

» Start with AA =Av

* Iis the identity matrix

* Noting that Iv =v, rewrite as (A-Al)v=0
* A - Alis square matrix

p,(A)=[A-AI

e | | is notation for determinant
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Characteristic Equation of A

Since v 1s nonzero, A-Al is
singular (non invertible);
therefore its determinant 1s 0.

p,(A)=0

The roots of this n-degree
polynomial are the
eigenvalues of A.



Example Calculation of

Eigenvalues
0 1] [~ O
A-'o'I — -
A-1-=1 5 510 2
--}b 1 ] ) a
— /L LT —_
2 3. L-+3h+2=0

Solutions are A=-1 and A = -2
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Eigenvalue Equation

« Use fo obtain the corresponding eigenvector v for

each eigenvalue A

(A-Al)v= 0
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Eigenvalues and
Eigenvectors in R

¢ > eigen(x)

e demo
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R Functions for PCA

* prcomp () - Uses SVD, the preferred method

* Display shows standard deviations of the
components

* > pr<-prcomp (dataset, scale=TRUE)

* Transform the data info the new coordinate system:
> new<-prSx[,1:2]

princomp () UsSes covariance matrix—for
compatibility with S-PLUS
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T1ps
Dataset can have numeric values only. Need to

exclude nonnumeric features with brackets or
subset.

modelname<-princomp (dataset)

summary (modelname) gives proportion of the total
varionce explained by each component.

Modelname$loadings
Modelnames$scores
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* center
* scale

* scale.

Options
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Component Loadings
» Eigenvectors evEigenvalues

« Correlation between the component
and the original features: how much
variation in a feature is explained by o

component
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Preparation

Center the variables
Scale the variables

Skewness tfransformation: makes the distribution
more symmetrical

Box-Cox tfransformation: makes the distribution more
normal like
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Scoring

V: the matrix whose columns are the eigenvectors
of the covariance maitrix. Each eigenvector is
normalized to have unit length.

VT now defines a rotation
Start with original dataset x.

Calculate mean of each column to obtain row
vector m.

Subtract m from each row of x to obfain z. Multiply z
by VT to obtain the new matrix of new coordinates
C.
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Covariance

COV(X,Y) = ?:1(X,-;)_f)1(Yi— P)

(Numerator can be
expressed as XX1)
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.

Covariance Matrix

Var(X)
Cov(X,Y) Var(Y)
Cov(X,Z) Cov(Y.Z)

CO\"(X, Y) CO\"(X, Z)

Cov(Y : Z)
Var(Z)
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Principal Components

The first principal component is the eigenvector of
the covariance matrix that has the largest
eigenvalue

This vector points into the direction of the largest
variance of the data

The magnitude of this vector equals the
corresponding eigenvalue.

The second largest eigenvector is orthogonal to the
largest eigenvector, and points intfo the direction of
the second largest spread of the data.
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Scree Plot

Plots the variances against the number of the
principal component

Used to visiually assess which components explain
most of the variability

INR: fit <- princomp (dataset)
screeplot (fit)

pc

| | |

Variances
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Ei1genfaces
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Multidimensional
Scaling



Overview of MDS

You are given pairwise relationships between cases
e.q.

o Distance between cities

o Measures of similarity/dissimilarity
o Importance

o Preferences

MDS lays these cases out as points in an n-
dimensional space

Traditional use is with n=2 or n=3 to visualize
relationships in the data for exploratory purposes

In ML we can also use to reduce dimensionality of
data

4
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Contrast with PCA

« PCA reduces dimensionality while retaining
variance
« MDS

o Can be used to infroduce dimensionality

o Can be used to reduces dimensionality while retaining the relative
distances
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Distances Between Some
European Cities
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Constructed
Space
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Actual locations
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For Dimensionalty
Reduction

* QOriginal data matrix — Each column represents @
feature. Each of the N rows represents a point.

« Create Dissimilarity Maftrix storing the dist ()

distances d, between the points. The R function
does this.

d()(X], X]) s dO(XN, X])

dO(XI) XN) vt dO (XN) XN)
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Performing MDS in R

k is number of dimensions you want for the
reconstructed space

d is full symmetric Dissimilarity Matrix
cmdscale (d, k=3)

The ¢ In emdscale stands for “classical”
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Non-Metric MDS

« Exact distances in the reconstructed space can be
off a little

* Imagine springs of the original distance between
the points. Want to minimize the overall stress
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Spring model




Common Stress Metrics
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NMDS in R

* dmat is lower-triangle Dissimilarity Matrix
* nmds (dmat)
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tsne

t-Distributed Stochastic
Neighbor Embedding



Basic Idea

Maps points in N dimensions onto a visualizable 2 or
3 dimensions

Computes probabillity distribution of each point
being similar to each other point

Does this for both the hi dim and lo dim
representations

Then minimizes divergence between the high
dimension and low dimension distributions
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Similarity Distance Measure

=Cosine Similarity = Euclidean

Distance

= Manhattan distance

@dataaspirant.com

« Euclidean distance

d(p,q) = \/(Pl —q)’+ @ —@)’++@i—w)+ -+ (Pr— @)
° e 50




tsne takes a Probabilistic
Approach to Similarity

Model the distance as having a probability distribution

Treat measured distance the peak of a symmetric bell
curve

Assign lower variances to points that are in denser areas

Originally the low dim and hi dim representations each
used Gaussian distributions

Refinement of the technique now uses the heavier-tailed
Student’s t-distribution for the lo dim
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tsne in R

« Performs tsne dimensionality reduction on an R
matrix or a "dist" object
tsne (X, initial config = NULL, k = 2,
initial dims = 30, perplexity = 30,
max iter = 1000, min cost = O,
epoch callback = NULL, whiten = TRUE,
epoch=100)
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R Demo of tsna and
Comparison with PCA



Factor Analysis



Factor Analysis

 Discovers latent factors that influence the features

« Each original feature is a linear combination of the
factors
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